← Back to Documentation
Sparse Operations Implementation Plan
Created: 2025-05-30
Related Task: T74 - Optimize Quantum Operator Performance
Overview
Implementation plan for sparse storage and operations to optimize quantum operator performance. Target: extend practical limits from 6-7 qubits to 10-12 qubits while maintaining API compatibility.
Current Performance Bottlenecks
- 6 qubits: 51ms (borderline acceptable)
- 7 qubits: 396ms (significant delay)
- 8 qubits: 3.2 seconds (impractical)
State vector operations scale well (16 qubits in 75ms), indicating dense matrix operations in operators are the primary bottleneck.
Simple Transparent Implementation Strategy
Core Principle: Keep It Really Simple, Stupid (KIRSS)
Key Insight: Keep exact same classes and APIs, only change internal storage.
StateVector Sparse Storage
Current Dense Implementation:
class StateVector {
amplitudes: Complex[] = [amp1, amp2, amp3, ...]; // Dense array
}
Proposed Sparse Implementation:
class StateVector {
private dense: Complex[] | null = null;
private sparse: Map<number, Complex> = new Map(); // Only non-zero values
private sparsityThreshold: number = 0.8; // Use sparse when >80% zeros
getState(index: number): Complex {
return this.sparse.get(index) || math.complex(0, 0);
}
get amplitudes(): Complex[] {
if (!this.dense) {
// Convert sparse to dense when needed
this.dense = Array(this.dimension).fill(math.complex(0, 0));
this.sparse.forEach((val, idx) => this.dense[idx] = val);
}
return this.dense;
}
}
MatrixOperator Optimizations
Specialized Operator Classes (same interface):
- IdentityOperator - No matrix storage
class IdentityOperator implements IOperator {
apply(state: IStateVector): StateVector {
return state.clone(); // No matrix multiplication!
}
compose(other: IOperator): IOperator {
return other; // I ∘ A = A
}
}
- DiagonalOperator - Store only diagonal elements
class DiagonalOperator implements IOperator {
private diagonal: Complex[];
apply(state: IStateVector): StateVector {
// Element-wise multiplication, no full matrix
const newAmps = state.amplitudes.map((amp, i) =>
math.multiply(amp, this.diagonal[i])
);
return new StateVector(state.dimension, newAmps);
}
}
- SparseMatrixOperator - Compressed storage for sparse matrices
class SparseMatrixOperator implements IOperator {
private sparseData: Map<string, Complex> = new Map(); // "i,j" -> value
apply(state: IStateVector): StateVector {
// Sparse matrix-vector multiplication
return sparseMatrixVectorMultiply(this.sparseData, state);
}
}
Performance Trade-offs
Small Objects (2-8 qubits)
- Sparse storage penalty: 2-3x slower due to Map overhead and hash lookups
- Break-even point: ~50% sparsity
- Mitigation: Use sparsity threshold (>80% zeros) before switching to sparse
Large Objects (10+ qubits)
- Memory savings: Exponential reduction for sparse states
- Performance gains: Avoid unnecessary zero operations
- Target improvement: 10-12 qubit practical limit
Implementation Status
Phase 1: Infrastructure - ✅ COMPLETE
- ✅ Added sparse interfaces to core types (ISparseEntry, ISparseMatrix, ISparseOperator)
- ✅ Implemented comprehensive sparse matrix utilities (284 lines)
- ✅ Core operations: create, set/get entries, matrix-vector multiplication
- ✅ Matrix transformations: transpose, conjugate transpose, trace, norm
- ✅ Property detection: identity, diagonal, validation
- ✅ Conversion utilities: sparse ↔ dense, cleanup functions
- ✅ Created comprehensive test suite (17 tests, all passing)
- ✅ Validated mathematical correctness of all sparse operations
Phase 2: Core Optimizations - ✅ COMPLETE
- ✅ IdentityOperator Implementation:
- No matrix storage - uses direct state cloning for apply()
- compose() returns other operator (I ∘ A = A optimization)
- Memory footprint: O(1) vs O(n²) for MatrixOperator
- ✅ DiagonalOperator Implementation:
- Compressed storage: Complex[] vs Complex[][]
- Element-wise multiplication for apply() operations
- Diagonal×diagonal composition optimization
- Memory footprint: O(n) vs O(n²) for MatrixOperator
- ✅ MatrixOperator Enhancements:
- createOptimized() factory with automatic operator selection
- Identity detection and automatic IdentityOperator creation
- Diagonal detection and automatic DiagonalOperator creation
- Fallback to standard MatrixOperator for general matrices
- ✅ Integration and Exports:
- Updated operators/index.ts with specialized and sparse exports
- Modified MatrixOperator.identity() to return IdentityOperator
- Resolved naming conflicts (isDiagonalMatrix vs isSparseDiagonalMatrix)
- Extended OperatorType union with new operator types
- ✅ Comprehensive Testing:
- specialized.test.ts with 250+ lines of test coverage
- Performance verification against MatrixOperator equivalents
- Integration testing with MatrixOperator.createOptimized()
- Edge case validation and error handling
Phase 2: Core Optimizations - ✅ COMPLETE
- ✅ Implemented IdentityOperator class with no matrix storage
- ✅ Implemented DiagonalOperator class with compressed diagonal storage
- ✅ Added MatrixOperator.createOptimized() factory with automatic optimization selection
- ✅ Extended OperatorType union with 'identity' and 'diagonal' types
- ✅ Updated exports and resolved naming conflicts
- ✅ Created comprehensive test suite (specialized.test.ts - 250 lines)
Phase 3: Testing and Validation - 🔄 NEXT
Phase 4: Advanced Features - ⬜ FUTURE
API Compatibility
Zero Breaking Changes:
- Same class names
- Same method signatures
- Same public interfaces
- Existing code works unchanged
- Automatic performance improvements
Transparency Mechanism:
- Internal storage optimization
- Graceful degradation to dense when needed
- Sparsity threshold prevents small-object penalties
Files Modified
Created Files
- ✅
packages/quantum/src/operators/sparse.ts - Comprehensive sparse matrix utilities (284 lines)
- ✅
packages/quantum/src/operators/specialized.ts - IdentityOperator and DiagonalOperator implementations (180 lines)
- ✅
packages/quantum/__tests__/operators/sparse.test.ts - Sparse matrix test suite (17 tests)
- ✅
packages/quantum/__tests__/operators/specialized.test.ts - Specialized operators test suite (250 lines)
Modified Files
- ✅
packages/quantum/src/core/types.ts - Extended OperatorType union with 'identity' and 'diagonal'
- ✅
packages/quantum/src/operators/operator.ts - Added createOptimized() factory, updated imports, modified identity() method
- ✅
packages/quantum/src/operators/index.ts - Added exports for specialized and sparse modules
Future Files (Phase 4)
- ⬜
packages/quantum/src/states/stateVector.ts - Add sparse storage option for large state vectors
- ⬜
packages/quantum/src/operators/gates.ts - Use specialized implementations for common gates
- ⬜
packages/quantum/src/utils/sparsity.ts - Advanced sparsity detection and threshold management
Success Metrics
- Performance: 10-12 qubit operations in <1 second
- Memory: Reduced memory usage for sparse systems
- Compatibility: All existing tests pass unchanged
- Maintainability: No increase in code complexity for users
Quantum Random Walk Application Analysis
Updated: 2025-06-03 - T76 Quantum Random Walk Implementation
Memory Requirements for 2D Quantum Random Walks
The T74 sparse infrastructure enables practical quantum random walk simulations on large lattices. Analysis shows dramatic memory savings for the specific structure of quantum walk operators.
State Space Structure
- Total Hilbert space: H_coin ⊗ H_position
- Coin space: 4-dimensional (↑,↓,←,→)
- Position space: width × height dimensional
- Total dimension: 4 × width × height
Memory Analysis Summary
Dense Implementation (Current Default):
Size | Total Dim | State(KB) | Dense Op(MB) | Practical Limit
---------|-----------|-----------|--------------|----------------
10x10 | 400 | 6 | 2 | ✅ Acceptable
15x15 | 900 | 14 | 12 | ⚠️ Borderline
20x20 | 1600 | 25 | 39 | ❌ Impractical
25x25 | 2500 | 39 | 95 | ❌ Prohibitive
50x50 | 10000 | 156 | 1526 | ❌ Impossible
Sparse Implementation (T74 Infrastructure):
Size | Total Dim | Sparse(KB) | Dense(MB) | Memory Reduction
---------|-----------|------------|-----------|------------------
10x10 | 400 | 83 | 2 | 30x
25x25 | 2500 | 523 | 95 | 187x
50x50 | 10000 | 2102 | 1526 | 743x
100x100 | 40000 | 8422 | 24414 | 2,968x
200x200 | 160000 | 33719 | 390625 | 11,863x
Component-Wise Memory Breakdown
State Vector (always dense):
- 50×50 lattice: 156 KB
- 100×100 lattice: 625 KB
- 200×200 lattice: 2.5 MB
Coin Operator (block diagonal structure):
- I_position ⊗ C_coin creates sparse block diagonal matrix
- Each position has one 4×4 dense coin block
- Storage: ~40% of state vector size for sparse representation
- Example: 100×100 lattice coin operator = 6.25 MB sparse vs 24 GB dense
Shift Operator (extremely sparse):
- Each row has exactly 1 non-zero entry (conditional movement)
- Total non-zeros: ~99% of total dimension (boundary effects)
- Storage: ~25% of state vector size
- Example: 100×100 lattice shift operator = 1.5 MB sparse vs 24 GB dense
Sparse Structure Optimizations
Coin Operator Optimization:
// Block diagonal structure: I_position ⊗ C_coin
// Each 4x4 block is the same coin matrix C
const coinBlocks = positionDim; // Number of blocks
const nonZerosPerBlock = 16; // 4x4 dense blocks
const totalCoinNonZeros = coinBlocks * nonZerosPerBlock;
const coinOperatorBytes = totalCoinNonZeros * (16 + 24); // Value + overhead
Shift Operator Optimization:
// Highly sparse: each row has at most 1 non-zero entry
// Movement: up/down/left/right based on coin state
let shiftNonZeros = 0;
for (position in lattice) {
for (coinState in [up, down, left, right]) {
if (canMoveInDirection(position, coinState)) {
shiftNonZeros++; // Exactly one non-zero per valid move
}
}
}
// Result: ~90% of total dimension for interior points
Performance Implications
Evolution Step Operations:
- Dense approach: O(n⁴) operations for n×n lattice
- Sparse approach: O(n²) operations for n×n lattice
- Performance scaling: Linear vs quadratic in lattice size
Memory Scaling:
- Dense operators: O(n⁴) memory for n×n lattice
- Sparse operators: O(n²) memory for n×n lattice
- Practical limit: 200×200 lattices with sparse (33 MB total)
Implementation Strategy for T76
Phase 1: Leverage T74 Infrastructure
- Use
IdentityOperator for position identity terms
- Use sparse matrix utilities for shift operators
- Implement coin operators as sparse block diagonal
- Target 50×50 lattices as primary use case
Phase 2: Quantum Walk Specific Optimizations
- Custom shift operator class with movement logic
- Block diagonal coin operator implementation
- Composite state management with sparse representations
- Memory-efficient evolution algorithms
Target Performance (T76):
- Primary target: 50×50 lattices (2 MB total memory)
- Stretch goal: 100×100 lattices (8 MB total memory)
- Evolution speed: 100+ time steps in reasonable time
- Memory reduction: 500-3000x vs dense implementation
Conclusion
The T74 sparse infrastructure makes quantum random walks practically feasible for research-scale lattices:
- 50×50 lattices are comfortably achievable (743x memory reduction)
- 100×100 lattices are feasible for research applications (2,968x reduction)
- Linear memory scaling O(n²) instead of quartic O(n⁴)
- Dramatic performance improvements enable practical quantum walk simulations
Risk Mitigation
- Small object penalty: Sparsity threshold prevents performance regression
- API stability: No public interface changes
- Fallback strategy: Dense implementation always available
- Incremental deployment: Phase-by-phase implementation allows testing
- Quantum walk validation: Memory calculations verified against theoretical requirements
This plan prioritizes simplicity and backward compatibility while achieving the performance goals of T74 and enabling the ambitious quantum random walk simulations of T76.
Last Updated: 2025-07-06