Created: 2025-06-03 | Updated: 2025-06-03
This document outlines the implementation plan for the tensor network module (T75) within packages/quantum. The module provides memory-efficient representation and computation of quantum states using tensor network algorithms while leveraging all existing quantum and graph-core infrastructure.
Quantum Module Dependencies:
StateVector (IQuantumState interface)Operator (IOperator interface) QuantumGraph classQuantumObject union typeGraph-Core Module Dependencies:
lattice2DPeriodic, etc.)GraphologyAdapterIGraph interfacespackages/quantum/src/tensorNetwork/
├── core/
│ ├── tensorIndex.ts # Index system built on existing graph indices
│ ├── graphTensor.ts # Tensor class using IGraph topology
│ └── contraction.ts # Uses existing matrix operations utilities
├── states/
│ ├── tensorNetworkState.ts # Implements IQuantumState interface
│ ├── graphStateDecomposer.ts # Converts QuantumGraph → TensorNetwork
│ └── stateVectorBridge.ts # Uses existing StateVector conversion
├── operators/
│ ├── tensorOperator.ts # Implements IOperator interface
│ ├── gateDecomposer.ts # Converts existing gates to tensor form
│ └── measurementTensor.ts # Uses existing measurement system
├── networks/
│ ├── latticeNetwork.ts # Uses graph-core lattice builders
│ ├── toricCodeNetwork.ts # Builds on existing toric code example
│ └── customNetwork.ts # Uses QuantumGraph as topology
└── index.ts # Exports as QuantumObject variants
Goal: Basic tensor operations leveraging existing matrix utilities
Files: core/graphTensor.ts, core/tensorIndex.ts
Implementation:
class GraphTensor {
constructor(
private data: Complex[],
private shape: number[],
private topology: IGraph, // Use existing IGraph interface
private indices: string[]
) {}
// Leverage existing matrix operations utilities
contract(other: GraphTensor): GraphTensor
reshape(newIndices: string[]): GraphTensor
}
Key Integration Points:
Complex type from Math.js integrationIGraph interface from graph-coreEstimated effort: 2-3 days
Goal: TensorNetworkState implementing IQuantumState interface
Files: states/tensorNetworkState.ts, states/stateVectorBridge.ts
Implementation:
class TensorNetworkState implements IQuantumState {
objectType = 'tensorNetworkState' as const
constructor(private network: TensorNetwork) {}
// Implement all IQuantumState methods
dimension: number
norm(): number
normalize(): TensorNetworkState
// Bridge to existing StateVector system
toStateVector(): StateVector
static fromStateVector(state: StateVector): TensorNetworkState
}
Key Integration Points:
IQuantumState interface completelyStateVector conversion patternsQuantumObject union typeEstimated effort: 3-4 days
Goal: Convert QuantumGraph to tensor network representation
Files: states/graphStateDecomposer.ts, networks/customNetwork.ts
Implementation:
class GraphStateDecomposer {
static decompose(qGraph: QuantumGraph): TensorNetworkState {
// Extract quantum objects from graph vertices/edges
// Build tensor network matching graph topology
// Leverage existing QuantumGraph methods
}
}
function createTensorNetwork(graph: IGraph): TensorNetwork {
// Use existing graph builders from graph-core
// Integrate with existing lattice generators
}
Key Integration Points:
QuantumGraph class and methodslattice2DPeriodic, etc.)Estimated effort: 2-3 days
Goal: Tensor network operators implementing IOperator interface
Files: operators/tensorOperator.ts, operators/gateDecomposer.ts
Implementation:
class TensorNetworkOperator implements IOperator {
objectType = 'tensorNetworkOperator' as const
// Implement all IOperator methods
apply(state: TensorNetworkState): TensorNetworkState
tensorProduct(other: IOperator): TensorNetworkOperator
// Convert existing gates to tensor form
static fromGate(gate: IOperator): TensorNetworkOperator
}
Key Integration Points:
IOperator interface completelyEstimated effort: 2-3 days
Goal: Domain-specific tensor networks using existing infrastructure
Files: networks/latticeNetwork.ts, networks/toricCodeNetwork.ts
Implementation:
// Leverage existing toric code example
function createToricCodeTensorNetwork(width: number, height: number): TensorNetworkState {
const lattice = lattice2DPeriodic(width, height) // Existing builder
const qGraph = new QuantumGraph(lattice) // Existing QuantumGraph
return GraphStateDecomposer.decompose(qGraph) // Convert to tensor network
}
// Use existing lattice builders
function createLatticeNetwork(builder: () => IGraph): TensorNetworkState {
// Leverage all existing graph builders
}
Key Integration Points:
Estimated effort: 1-2 days
Goal: Comprehensive testing using existing test infrastructure
Files: Test files in existing __tests__/ structure
Key Integration Points:
Estimated effort: 2-3 days
tensor.test.ts: Core tensor operationscontraction.test.ts: Einstein summation correctnesstensorState.test.ts: Quantum state operationsconversion.test.ts: StateVector compatibility// Use existing graph builder and QuantumGraph
const lattice = lattice2DPeriodic(3, 3) // Existing graph-core builder
const qGraph = new QuantumGraph(lattice) // Existing QuantumGraph class
// Initialize with existing state creation
for (const node of qGraph.getNodes()) {
const plusState = createBasisState(2, 0).add(createBasisState(2, 1)).normalize()
qGraph.setVertexQuantumObject(node.id, plusState)
}
// Convert to tensor network
const tensorNetwork = GraphStateDecomposer.decompose(qGraph)
console.log('Memory reduction:', qGraph.memorySize / tensorNetwork.memorySize)
// Build on existing toric code example
const config = { width: 2, height: 2 }
const qGraph = setupToricCode(config) // Existing function from T73a
// Convert to tensor network for memory efficiency
const tensorNetwork = createToricCodeTensorNetwork(config.width, config.height)
// Use existing measurement system
const result = tensorNetwork.measureSubsystem(['0,0', '0,1', '1,0', '1,1'])
console.log('Measurement result:', result)
// Use existing quantum gates
const cnotGate = CNOT // Existing gate from quantum module
const tensorCNOT = TensorNetworkOperator.fromGate(cnotGate)
// Apply to tensor network state
const initialState = TensorNetworkState.fromStateVector(someBellState)
const finalState = tensorCNOT.apply(initialState)
// Convert back to StateVector for validation
const stateVector = finalState.toStateVector()
// Use existing quantum graph operations
const qGraph = new QuantumGraph(lattice2DPeriodic(2, 2))
qGraph.applyOperation(['0,0', '0,1'], PauliX.tensorProduct(PauliX))
// Convert to tensor network for efficient representation
const tensorNetwork = GraphStateDecomposer.decompose(qGraph)
// Perform tensor network operations
const contracted = tensorNetwork.contract() // Get full state vector when needed
Week 1: Phase 1 (Core tensor with existing matrix ops) + Phase 2 (IQuantumState integration)
Week 2: Phase 3 (QuantumGraph conversion) + Phase 4 (IOperator integration)
Week 3: Phase 5 (Specialized networks using existing builders) + Phase 6 (Testing with existing infrastructure)
Week 4: Documentation + Performance benchmarks + Integration examples
Risk: Breaking existing interfaces Mitigation: Implement all existing interfaces exactly, maintain full compatibility
Risk: Performance overhead in existing workflows
Mitigation: Make tensor networks optional, maintain existing StateVector performance
Risk: Integration complexity with QuantumGraph Mitigation: Use existing patterns from QuantumGraph implementation
Risk: Testing complexity Mitigation: Build on existing test infrastructure and validation patterns
Risk: Memory overhead in conversion Mitigation: Implement lazy evaluation, leverage existing matrix operation optimizations